editing disabled

Canopus is the rank two 3.5.7 temperament tempering out 16875/16807. Having a generator of ~7:5, it possesses non-trivial MOS of the families 1L 2s (triad), 3L 1s (tetrad), 3L 4s ("neutral" diatonic) and 3L 7s (augmented neutral decatonic). On either side the greater region where it appears, there appear the most important, though as yet unnamed, tritave-equivalent temperaments which retain twos, they being important for using a (smeary) ~4:3 or 3:2 as a generator.

The Sigma and Anti-Sigma (Mu) MOS families of 8L+3s and 3L+8s (unfair) or 4L+7s and 7L+4s (fair), but especially the unfair families which by definition include an interval for the function of an "ordinary" ~2:1, are good scales to know for the conceptualizations they provide of how an "ordinary" diatonic or anti-diatonic scale extends into a tritave equivalence. These scales are neighbors of the 7&3 region where the 3L+7s Canopus decatonic scale appears. Below is a list of equal temperaments which contain these scales using generators between or 475.5 and 713.2 cents:

L=1 s=0 8 edt
L=1 s=0 7 edt
L=1 s=0 3 edt
L=7 s=1 59
L=7 s=1 53
L=7 s=1 28
L=6 s=1 51
L=6 s=1 46
L=6 s=1 25
L=5 s=1 43
L=5 s=1 39
L=5 s=1 22
L=4 s=1 35
L=4 s=1 32
L=4 s=1 19
L=7 s=2 62
L=7 s=2 57
L=7 s=2 35
L=3 s=1 27
L=3 s=1 25
L=3 s=1 16
L=5 s=2 46
L=5 s=2 43
L=5 s=2 29
L=7 s=3 65
L=7 s=3 61
L=7 s=3 42
L=2 s=1 19
L=2 s=1 18
L=2 s=1 13
L=7 s=4 68
L=7 s=4 65
L=7 s=4 49
L=5 s=3 49
L=5 s=3 47
L=5 s=3 36
L=3 s=2 30
L=3 s=2 29
L=3 s=2 23
L=7 s=5 71
L=7 s=5 69
L=7 s=5 56
L=4 s=3 41
L=4 s=3 40
L=4 s=3 33
L=5 s=4 52
L=5 s=4 51
L=5 s=4 43
L=6 s=5 63
L=6 s=5 62
L=6 s=5 53
L=7 s=6 74
L=7 s=6 73
L=7 s=6 63
L=1 s=1 11 edt
L=1 s=1 10 edt
L=7 s=6 69
L=7 s=6 70
L=7 s=6 67
L=6 s=5 58
L=6 s=5 59
L=6 s=5 57
L=5 s=4 47
L=5 s=4 48
L=5 s=4 47
L=4 s=3 36
L=4 s=3 37
L=4 s=3 37
L=7 s=5 61
L=7 s=5 63
L=7 s=5 64
L=3 s=2 25
L=3 s=2 26
L=3 s=2 27
L=5 s=3 39
L=5 s=3 41
L=5 s=3 44
L=7 s=4 53
L=7 s=4 56
L=7 s=4 61
L=2 s=1 14
L=2 s=1 15
L=2 s=1 17
L=7 s=3 45
L=7 s=3 49
L=7 s=3 58
L=5 s=2 31
L=5 s=2 30
L=5 s=2 41
L=3 s=1 17
L=3 s=1 19
L=3 s=1 24
L=7 s=2 37
L=7 s=2 42
L=7 s=2 55
L=4 s=1 20
L=4 s=1 23
L=4 s=1 31
L=5 s=1 23
L=5 s=1 27
L=5 s=1 38
L=6 s=1 26
L=6 s=1 31
L=6 s=1 45
L=7 s=1 29
L=7 s=1 35
L=7 s=1 52
L=1 s=0 3 edt
L=1 s=0 4 edt
L=1 s=0 7 edt
As the table shows, the two families overlap at several equal temperaments within the first sixteen proper members of each tree due to the fact that the chain of ~4:3s forms an index-2 subtemperament of a chain of ~3:2s under tritave equivalence. Beyond that, the unfair Sigma and Mu scales match the EDO-EDT correspondences due to their definition including an interval with the function of an "ordinary" ~2:1 which can nevertheless be off by up to +68.0 cents and the fair scales compare to 5a+2b edos in a completely backwards way, with 7L+4s actually comparing to the anti-diatonic scale but being contained in the larger edts. This backward way that the fair scales compare to edos creates an interesting coincidence between 27edt and 27edo both as generated by an ~4:3.
Generator
cents
L
s
notes
3\8






713.23
237.74
0







22\59
709.20
225.66
32.24






19\51

708.57
223.76
37.29







35\94
708.175
222.57
40.47





16\43


707.74
221.16
44.23







45\121
707.34
220.06
47.16






29\78

707.14
219.46
48.77







42\113
706.92
218.81
50.49




13\35



706.44
217.37
54.34







49\132
706.03
216.13
57.635






36\97

705.88
215.69
58.82







59\159
705.76
216.32
59.81





23\62


705.56
214.74
61.35







56\151
705.36
214.13
62.98






33\89

705.22
213.70
64.11







43\116
705.035
213.15
65.585



10\27




704.43
211.33
70.44







47\127
703.87
209.66
74.88






37\100

703.72
209.215
76.08







64\173
703.61
208.885
76,96





27\73


703.46
208.43
78.16







71\192
703.33
208.03
79.25






44\119

703.24
207.78
79.91







61\165
703.15
207.49
80.69




17\46



702.90
206.73
82.69







58\157
702.63
205.94
84.80






41\111

702.52
205.62
85.67







65\176
702.43
205.325
86.45





24\65


702.26
204.83
87.78







55\149
702.06
204.24
89.35






31\84

701.91
203.78
90.57







38\103
701.69
203.12
92.34


7\19





700.72
200.21
100.10
Boundary of propriety for unfair Sigma scale






39\106
699.78
197.37
107.66






32\87

699.57
196.75
109.31







57\155
699.43
196.33
110.44





25\68


699.25
195.71
111.88







68\185
699.10
195.34
113.09






43\117

699.01
195.07
113.79







61\166
698.91
194.78
114.58




18\49



698.68
194.08
116.45







65\177
698.46
193.42
118.20






47\128

698.37
193.17
118.87







76\207
698.30
192.95
119.45
Golden unfair Sigma scale is near here




29\79


698.19
192.60
120.38







69\188
698.05
192.22
121.40






40\109

697.965
191.94
122.14







51\139
697.84
191.56
123.15



11\30




697.38
190.20
126.80







48\131
696.90
188.74
130.67






37\101

696.76
188.31
131.82







63\172
696.65
187.98
132.695





26\71


696.49
187.52
133.94







67\183
696.34
187.08
135.11






41\112

696.25
186.80
135.85







56\153
696.14
186.47
136.74




15\41



695.84
185.56
139.17







49\134
695.49
184.52
141.94






34\93

695.34
184.06
143.16







53\145
695.20
183.64
144.29





19\52


694.945
182.88
146.30







42\115
694.63
181.93
148.85






23\63

694.365
181.14
150.95







27\74
693.96
179.915
154.21

4\11






691.62
172.905
Separatrix of unfair Sigma and Mu scales






25\69
689.11
192.95
165.39






21\58

688.64
196.75
163.96







38\105
688.33
199.25
163.025





17\47


687.94
202.34
161.87







47\130
687.63
204.83
160.935






30\83

687.45
206.24
160.41







43\119
687.26
207.78
159.83




13\36



686.82
211.33
158.50







48\133
686.42
214.51
157.305






35\97

686.27
215.69
156.86







57\158
686.15
216.68
156.49





22\61


685.95
218.26
155.90







53\147
685.74
219.95
155.26






31\86

685.59
221.16
154.81







40\111
685.39
222.75
154.21



9\25




684.70
228.235
152.16







41\114
684.04
233.57
150.15






32\89

683.85
235.07
149.59







55\153
683.71
236.19
149.17





23\64


683.515
237.74
148.50







60\167
683.34
239.17
148.06
Golden unfair Mu scale is near here





37\103

683.23
240.05
147.725







51\142
683.10
241.09
147.335




14\39



682.75
243.84
146.30







47\131
682.38
246.815
145.19






33\92

682.22
248.08
144.71







52\145
682.08
249.22
144.29





19\53


681.83
251.20
143.54







43\120
681.53
253.59
142.65






24\67

681.30
255.49
141.94







29\81
680.95
258.29
140.89


5\14





679.27
271.71
135.85
Boundary of propriety for unfair Mu scale






26\73
677.48
286.60
130.27






21\59

676.97
290.13
128.95







37\104
676.66
292.61
128.02





16\45


676.25
295.86
126.78







43\121
675.90
298.65
125.75






27\76

675.695
300.31
125.13







38\107
675.46
302.18
124.43




11\31



674.89
306.77
122.71







39\110
674.33
311.23
121.03






28\79

674.12
312.98
120.38







45\127
673.92
314.50
119.81





17\48


673.61
316.99
118.87







40\113
673.26
319.80
117.82






23\65

673.00
321.89
117.04







29\82
672.64
324.72
115.97



6\17




671.28
335.64
111.88







25\71
669.70
348.245
107.15






19\54

669.21
352.21
105.66







32\91
668.82
355.31
104.50





13\37


668.25
359.83
102.81







33\94
667.71
364.20
101.17






20\57

667.35
367.04
100.10







27\77
666.92
370.51
98.80




7\20



665.68
380.39
95.10







22\63
664.175
392.37
90.57






15\43

663.47
398.08
88.46







23\66
662.80
403.445
86.45





8\23


661.55
413.47
82.69







17\49
659.86
426.97
73.63






9\26

658.37
439.81
73.15







10\29
655.85
459.09
65.585

1\3






633.985
0







9\28
611.34
475.49
67.92






8\25

608.63
456.47
76.08







15\47
607.01
445.39
80.93





7\22


605.18
432.26
86.45







20\63
603.795
422.66
90.57






13\41

603.06
417.50
92.78







19\60
602.29
412.09
95.10




6\19



600.62
400.41
100.11







23\73
599.25
390.81
104.22






17\54

598.76
387.425
105.66







28\89
598.37
384.665
106.85





11\35


597.76
380.39
108.68







27\86
597.125
375.97
110.58






16\51

596.69
372.93
111.88







21\67
596.135
369.04
113.55



5\16




594.36
356.62
118.87







24\77
592.82
345.81
123.50






19\61

592.41
342.975
124.72







33\106
592.12
340.92
125.60





14\45


591.72
338.125
126.80







37\119
591.36
335.64
127.86






23\74

591.15
334.13
128.51







32\103
590.90
332.38
129.26




9\29



590.26
327.92
131.17







31\100
589.61
323.33
133.14






22\71

589.34
321.46
133.94







35\113
589.10
319.80
134.65





13\42


588.70
316.99
135.85







30\97
588.23
313.725
137.25






17\55

587.88
311.23
138.32







21\68
587.37
307.67
139.85


4\13





585.22
292.61
146.30







23\75
583.27
278.95
152.16






19\62

582.86
276.09
153.38







34\111
582.58
274.16
154.21





15\49


582.23
271.71
155.26







41\134
581.94
269.68
156.13






26\85

581.77
268.51
156.63







37\121
581.59
267.22
157.19




11\36



581.15
264.16
158.50







40\131
580.75
261.34
150.71






29\95

580.60
260.27
160.165







47\154
580.47
259.36
160.555





18\59


580.26
257.89
161.18







43\141
580.03
259.29
161.87






25\82

579.86
255.14
162.36







32\105
579.64
253.59
163.025



7\23




578.86
248.08
165.39







31\102
578.045
242.41
167.82






24\79

577.81
240.75
168.53







41\135
577.63
239.505
169.06





17\56


577.38
237.74
169.82







44\145
577.145
236.105
170.52






27\89

577.00
235.07
170.96







37\122
576.82
233.85
171.49




10\33



576.35
230.54
172.905







33\109
575.82
226.84
174.49






23\76

575.59
225.23
175.18







36\119
575.38
223.76
175.81





13\43


575.01
221.16
176.93







29\96
574,55
217.93
178.31






16\53

574.175
215.32
179.43







19\63
573.605
211.33
181.14

3\10






570.59
190.20







20\67
567.75
198.72
170.32






17\57

567.25
200.21
166.84







31\104
566.93
201.17
164.50





14\47


566.54
202.34
161.87







39\131
566.23
203.26
159.71






25\84

566.06
203.78
158.50







36\121
565.87
204.34
157.19




11\37



565.45
205.62
154.21







41\138
565.07
206.73
151.605






30\101

564.94
207.14
150.65







49\165
564.82
207.49
149.85





19\64


564.64
208.03
148.59







46\155
564.45
208.60
147.25






27\91

564.32
209.00
146.30







35\118
564.14
209.54
145.06



8\27




563.54
211.33
140.89







37\125
562.98
213.02
136.94






29\98

562.82
213.485
135.85







50\169
562.71
213.83
135.05





21\71


562.55
214.30
133.94







55\186
562.41
214.74
132.93






34\115

562.32
215.00
132.31







47\159
562.21
215.32
131.58




13\44



561.94
216.13
129.68







44\149
561.65
217.00
127.65






31\105

561.53
217.37
126.80







49\166
561.42
217.69
126.03





18\61


561.23
218.26
124.72







41\139
561.01
218.93
123.15






23\78

560.83
219.46
121.92







28\95
560.58
220.23
120.12


5\17





559.40
223.76
111.88







27\92
558.18
227.41
103.37






22\75

557.91
228.235
101.44







39\133
557.72
228.81
100.10





17\58


557.47
229.55
98.38







46\157
557.26
230.17
96.915






29\99

557.14
230.54
96.06







41\140
557.00
230.95
95.10




12\41



556.67
231.95
92.78







43\147
556.35
232.89
90.57






31\106

556.23
233.26
89.715







50\171
556.13
233.57
88.98





19\65


555.96
234.09
87.78







45\154
555.77
234.66
86.45






26\89

555.63
235.07
85.48







33\113
555.44
235.64
84.16



7\24




554.74
237.74
79.25







30\103
553.97
240.05
73.86






23\79

553.73
240.75
72.23







39\134
553.55
241.29
70.97





16\55


553.30
242.07
69.16







41\141
553.05
242.80
67.445






25\86

552.89
243.27
66.35







34\117
552.805
243.84
65.02




9\31



552.18
245.41
61.35







29\100
551.57
247.25
57.06






20\69

551.29
248.08
55.13







31\107
551.03
248.85
53.33





11\38


550.57
250.26
50.05







24\83
549.96
252.07
45.83






13\45

549.45
253.59
42.27







15\52
548.64
256.03
36.58

2\7






543.42
271.71
0







15\53
538.29
251.20
35.89






13\46

537.51
248.08
41.35







24\85
537.02
246.135
44.75





11\39


536.45
243.84
48.77







31\110
536.00
242.07
51.87






20\71

535.76
241.09
53.58







29\103
535.50
240.05
55.40




9\32



534.925
237.74
59.44







34\121
534.43
235.78
62.875






25\89

534.26
235.07
64.11







41\146
534.11
234.49
65.135





16\57


533.88
233.57
66.735







39\139
533.6
232.61
68.42






23\82

533.475
231.95
69.58







30\107
533.26
231.09
71.10



7\25




532.55
228.235
76.08







33\118
531.90
225.66
80.59






26\93

531.73
224.96
81.805







45\161
531.60
224.45
82,69





19\68


531.43
223.76
83.91







50\179
531.27
223.13
85.00






31\111

531.18
222.75
85.67







43\154
531.065
222.31
86.45




12\43



530.78
221.16
88.46







41\147
530.48
218.95
90.57






29\104

530.35
219.46
91.44







46\165
530.24
219.01
92.22





17\61


530.05
218.26
93.54







39\140
529.83
217.37
95.10






22\79

529.66
216.68
96.30







27\97
529.41
215.69
98.04


5\18





528.32
211.33
105.66
Boundary of propriety for fair Mu scale






28\101
527.275
207.14
112.99






23\83

527.05
206.23
114.58







41\148
526.89
205.62
115.66





18\65


526.695
204.83
117.04







49\177
526.53
204.165
118.20






31\112

526.43
203.78
118.87







44\159
526.53
203.35
119.62




13\47



526.07
202.34
121.40







47\170
525.835
201.38
123.07






34\123

525.74
201.02
123.70







55\199
525.67
200.71
124.25
Golden fair Mu scale is near here




21\76


525.54
200.21
125.13







50\181
525.40
199.65
126.10






29\105

525.30
199.25
126.80







37\134
525.17
198.71
127.74



8\29




524.68
196.75
131.17







35\127
524.16
194.69
134.78






27\98

524.01
194.08
135.85







46\167
523.89
193.61
136.67





19\69


523.73
192.95
137.82







49\178
523.57
192.33
138.91






30\109

523.47
191.94
139.59







41\149
523.37
191.47
140.41




11\40



523.04
190.20
142.65







36\131
522.675
188.74
145.19






25\91

522.515
188.105
146.30







39\142
522.37
187.52
147.335





14\51


522.105
186.466
149.17







31\113
521.78
185.15
151.48






17\62

521.50
184.06
153.38







20\73
521.08
182.38
156.325

3\11






518.715
172.905
Separatrix of fair Sigma and Mu scales






19\70
516.24
190.20
163.025






16\59

512.78
193.42
161.18







29\107
515.48
195.53
159.98





13\48


515.11
198.12
158.50







36\133
514.815
200.21
157.305






23\85

514.65
201.38
156.63







33\122
514.46
202.67
155.90




10\37



514.04
205.62
154.21







37\137
513.67
208.24
152.71






27\100

513.53
209.215
152.16







44\163
513.41
210.03
151.69





17\63


513.23
211.33
150.95







41\152
513.03
212.72
150.15






24\89

512.89
213.70
149.59







31\115
512.70
215.00
148.85



7\26




512.59
219.68
146.30







32\119
511.45
223.76
143.845






25\93

511.28
224.96
143.16







43\160
511.10
225.86
142.65





18\67


510.97
227.10
141.94







47\175
510.81
228.23
141.29
Golden fair Sigma scale is near here





29\108

510.71
228.94
140.89







40\149
510.59
229.77
140.41




11\41



510.28
231.95
139.17







37\138
509.94
234.30
137.82






26\97

509.80
235.29
137.25







41\153
509.67
236.19
136.71





15\56


509.45
237.74
135.85







34\127
509.185
239.62
134.78






19\71

507.97
241.09
133.94







23\86
506.66
243.27
132.695


4\15





507.19
253.59
126.80
Boundary of propriety for fair Sigma scale






21\79
505.58
264.83
120.38






17\64

505.21
267.42
118.87







30\113
504.94
269.30
117.82





13\49


504.60
271.71
116.45







35\132
504.30
273.77
115.27






22\83

504.13
274.98
114.58







31\117
503.94
265.35
113.79




9\34



503.46
279.70
111.88







32\121
503.00
282.935
110.03






23\87

502.82
284.20
109.31







37\140
502.66
285.29
108.68





14\53


502.40
287.09
107.66







33\125
502.12
289.10
106.51






19\72

501.90
290.58
105.66







24\91
501.615
292.61
104.50



5\19




500.51
300.31
100.10







21\80
499.26
309.07
95.10






16\61

498.87
311.80
93.54







27\103
498.57
313.915
92.33





11\42


498.13
316.99
90.57







28\107
497.71
319.955
88.88






17\65

497.43
321.87
87.78







23\88
497.10
324.20
86.42




6\23



496.16
330.775
82.69







19\73
495.03
338.70
78.16






13\50

494.51
342.35
76.08







20\77
494.01
345.81
74.10





7\27


493.10
352.21
70.44







15\58
491.885
360.72
65.585






8\31

490.83
368.12
61.35







9\35
489.07
380.39
54.34

1\4






475.49
0